Features

- Designed specifically to switch LVDS signals
- \(V_{DD} = 3.3V \pm 10\% \)
- ESD tolerance on video I/O pins is up to 12kV HBM
- -3dB BW of 870MHz (typ)
- Low Xtalk, (-28dB typ)
- Low and Flat ON-STATE resistance (\(R_{on} = 3\)ohm, \(R_{on(Flat)} = 0.5\)ohm, typ)
- Low input/output capacitance (\(C_{on} = 6pF, \) typ)
- Packaging (Pb-free and Green):
 - 56 contact TQFN (ZFE)
 - 42 contact TQFN (ZHE)

Applications

- Routes physical layer signals for high bandwidth

Description

Pericom’s PI3LVD512 is a 5-differential channel LVDS mux/demux used to switch between multiple LVDS sources or endpoints. In a notebook application where analog video signals are found in both the notebook and the dock, a switch solution is required to switch between the two video port locations. With the high bandwidth of 870MHz, the signal integrity will remain strong even through the long FR4 trace between the notebook and the docking station. In addition to high signal performance, the video signals are also protected against high ESD with integrated diodes to \(V_{DD} \) and GND that will support up to 12kV of ESD HBM protection.
Pin Description (42ZHE, top view)

- **VDD**: 1, 18, 19, 20, 21, 38
- **A0**: 2, 37, 0B2
- **A1**: 3, 36, 1B2
- **VDD**: 4, 35, 2B1
- **A2**: 5, 34, 3B2
- **A3**: 6, 33, 2B2
- **VDD**: 7, 32, 3B2
- **A4**: 8, 31, VDD
- **A5**: 9, 30, 4B2
- **A6**: 10, 29, 5B2
- **A7**: 11, 28, 4B2
- **SEL**: 12, 27, 5B2
- **VDD**: 13, 26, 6B1
- **A8**: 14, 25, 7B2
- **A9**: 15, 24, 6B2
- **8B1**: 16, 23, 7B2
- **NC**: 17, 22, VDD

Note: NC pin (5) could be left floating or tied to GND.
Maximum Ratings
(Above which useful life may be impaired. For user guidelines, not tested.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ. (^{(2)})</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Input HIGH Voltage</td>
<td>Guaranteed HIGH level</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input LOW Voltage</td>
<td>Guaranteed LOW level</td>
<td>-0.5</td>
<td>-0.7</td>
<td>0.8</td>
<td>µA</td>
</tr>
<tr>
<td>(V_{IK})</td>
<td>Clamp Diode Voltage</td>
<td>(V_{DD} = \text{Max.}, I_{SEL} = -18)mA</td>
<td>-</td>
<td>-0.7</td>
<td>-1.2</td>
<td>V</td>
</tr>
<tr>
<td>(I_{IH})</td>
<td>Input HIGH Current</td>
<td>(V_{DD} = \text{Max.}, V_{SEL} = V_{DD})</td>
<td>-</td>
<td>-</td>
<td>±5</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input LOW Current</td>
<td>(V_{DD} = \text{Max.}, V_{SEL} = \text{GND})</td>
<td>-</td>
<td>-</td>
<td>±5</td>
<td>µA</td>
</tr>
<tr>
<td>(I_{OFF})</td>
<td>Power Down Leakage Current</td>
<td>(V_{DD} = 0V, V_{A} \leq 3.6)</td>
<td>-</td>
<td>-</td>
<td>±5</td>
<td>µA</td>
</tr>
<tr>
<td>(R_{ON})</td>
<td>Switch On-Resistance(^{(3)})</td>
<td>(V_{DD} = \text{Min.}, 0.9V \leq V_{\text{input}} \leq 1.6V, I_{\text{input}} = -40mA)</td>
<td>-</td>
<td>2.8</td>
<td>3.5</td>
<td>Ω</td>
</tr>
<tr>
<td>(R_{FLAT(ON)})</td>
<td>On-Resistance Flatness(^{(4)})</td>
<td>(V_{DD} = \text{Min.}, V_{\text{input}} @ 0V \text{and } 1.5V, I_{\text{input}} = -40mA)</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>Ω</td>
</tr>
<tr>
<td>(\Delta R_{ON})</td>
<td>On-Resistance match from center ports to any other port(^{(4)})</td>
<td>(V_{DD} = \text{Min.}, 0.9V \leq V_{\text{input}} \leq 1.2V, I_{\text{input}} = -40mA)</td>
<td>-</td>
<td>0.9</td>
<td>2</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Note:
Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Truth Table

<table>
<thead>
<tr>
<th>Input SEL</th>
<th>Input/Output An</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>nB₁</td>
<td>(A_n = nB_1)</td>
</tr>
<tr>
<td>H</td>
<td>nB₂</td>
<td>(A_n = nB_2)</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics for Video Switching over Operating Range
\(T_A = -40°C \text{ to } +85°C, V_{DD} = 3.3V \pm 10\%\)

10-0185
3.3V, 5-differential channel LVDS switch targeted for 24bit displays

Capacitance (\(T_A = 25^\circ C, f = 1MHz\))

<table>
<thead>
<tr>
<th>Parameters(4)</th>
<th>Description</th>
<th>Test Conditions(1)</th>
<th>Typ.(2)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{IN})</td>
<td>Input Capacitance</td>
<td>(V_{SEL} = 0V)</td>
<td>2.7</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{OFF})</td>
<td>Port A/B Capacitance, Switch OFF</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(C_{ON})</td>
<td>Switch Capacitance, Switch ON</td>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at \(V_{DD} = 3.3V, T_A = 25^\circ C\) ambient and maximum loading.
3. Measured by the voltage drop between A and B pins at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (A & B) pins.
4. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Test Conditions(1)</th>
<th>Min.</th>
<th>Typ.(2)</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{CC})</td>
<td>Quiescent Power Supply Current</td>
<td>(V_{DD} = \text{Max.}, V_{SEL} = \text{GND or } V_{DD})</td>
<td>-</td>
<td>-</td>
<td>500</td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>

Notes:
1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at \(V_{DD} = 3.3V, T_A = 25^\circ C\) ambient and maximum loading.

Dynamic Electrical Characteristics Over the Operating Range (\(T_A = -40^\circ \text{C to } +85^\circ \text{C}, V_{DD}=3.3V\pm 10\%, \text{GND}=0V\))

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.(2)</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_{TALK})</td>
<td>Crosstalk</td>
<td>(f = 250MHz, \text{See Fig. 2})</td>
<td>-</td>
<td>-28</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>(O_{IRR})</td>
<td>OFF Isolation</td>
<td>(f = 250MHz, \text{See Fig. 3})</td>
<td>-</td>
<td>-41</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth –3dB</td>
<td>\text{See Fig. 1}</td>
<td>-</td>
<td>880</td>
<td>-</td>
<td>MHz</td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Min.</th>
<th>Typ.(2)</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{PD})</td>
<td>Propagation Delay(2,3)</td>
<td>-</td>
<td>0.25</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PZH}, t_{PLZ})</td>
<td>Line Enable Time - SEL to Input, Output</td>
<td>0.5</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(t_{PHZ}, t_{PLZ})</td>
<td>Line Disable Time - SEL to Input, Output</td>
<td>0.5</td>
<td>-</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>(t_{b-b})(2)</td>
<td>Differential Bit-to-bit Skew</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>ps</td>
</tr>
<tr>
<td>(t_{ch-ch})(2)</td>
<td>Differential channel to channel skew</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Guaranteed by design.
3. The switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.
Test Circuit for Electrical Characteristics

![Circuit Diagram]

Notes:
1. \(C_L \) = Load capacitance: includes jig and probe capacitance.
2. \(R_T \) = Termination resistance: should be equal to \(Z_{OUT} \) of the Pulse Generator.
3. All input impulses are supplied by generators having the following characteristics: \(f = 10 \text{ MHz}, Z_O = 50\Omega, t_R \leq 2.5\text{ns}, t_F \leq 2.5\text{ns} \).
4. The outputs are measured one at a time with one transition per measurement.

Switch Positions

<table>
<thead>
<tr>
<th>Test</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{PLZ}, V_{PZL}) (output on I-side)</td>
<td>6.0V</td>
</tr>
<tr>
<td>(V_{PZH}, V_{PZH}) (output on I-side)</td>
<td>GND</td>
</tr>
<tr>
<td>Prop Delay</td>
<td>Open</td>
</tr>
</tbody>
</table>

Test Circuit for Dynamic Electrical Characteristics

![Circuit Diagram]

Figure 1. Bandwidth -3dB Testing
Figure 2. Crosstalk Test Setup

Figure 3. Off Isolation Test Setup
Switching Waveforms

Voltage Waveforms Propagation Delay Times

Voltage Waveforms Enable and Disable Times

Applications Information

Logic Inputs
The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, the output enables or select pins may be driven low to 0V and high to 3.6V. Driving IN Rail-to-Rail® minimizes power consumption.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd
Packaging Mechanical: 56-Pin TQFN (ZF)

NOTE:
1. All dimensions are in mm. Angles in degrees.
2. Bilateral coplanarity zone applies to the exposed heat sink slug as well as the terminals.
3. Refer JEDEC MO-220 modified.
4. Thermal Via Diameter, Recommended 0.2~0.33mm
5. Thermal Via Pitch, Recommended 1.27mm

DATE: 05/15/08
DESCRIPTION: 56-contact, Thin Fine Pitch Quad Flat No-lead (TQFN)
PACKAGE CODE: ZF56
DOCUMENT CONTROL #: PD-2024 REVISION: C
Packaging Mechanical: 42 pin TQFN (ZH)

Notes:
1. All dimensions are in millimeters, angles in degrees.
2. Coplanarity applies to the exposed thermal pad as well as the terminals.
3. Refer JEDEC MO-220
4. Recommended Land Pattern is for reference only.
5. Thermal Pad Soldering Area

Ordering Information

<table>
<thead>
<tr>
<th>Ordering Code</th>
<th>Package Code</th>
<th>Package Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI3LVD512ZFE</td>
<td>ZFE</td>
<td>Pb-free & Green, 56-pin TQFN</td>
</tr>
<tr>
<td>PI3LVD512ZHE</td>
<td>ZHE</td>
<td>Pb-free and Green, 42-pin TQFN</td>
</tr>
</tbody>
</table>

Notes:
- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- Adding X suffix = Tape/Reel